首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rapid wave-driven advective pore water exchange in a permeable coastal sediment
Institution:1. State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China;2. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China;3. Guangdong Key Lab of Ocean Remote Sensing, Guangzhou, 510301, China;1. California Institute of Technology, Pasadena, CA 91125, United States;2. University of Southern California, Los Angeles, CA 90089, United States;3. The Hebrew University, Jerusalem, Israel
Abstract:In this study we present in-situ measurements of pore water flow velocities in a coastal sandy sediment (permeability=3.65×10?10 m2). The advective pore water flows were driven by the interaction of oscillating boundary flows with sediment wave ripples, (amplitude=7 cm, wavelength=30 to 50 cm). The measurements were carried out in the Mediterranean Sea at 50 to 70 cm water depth during a phase of very low wave energy (max. wave amplitude=10 cm). An optode technique is introduced that permits direct pore water flow measurements using a fluorescent tracer. Near the sediment surface (0.5 cm depth) pore water reached velocities exceeding 40 cm h?1. Thus, advective transport exceeded transport by molecular diffusion by at least 3 orders of magnitude. Based on the pore water velocity measurements and ripple spacing, we calculate that 140 L m?2 d?1 are filtered through the sediment. Pore water visualisation experiments revealed a flow field with intrusion of water in the ripple troughs and pore water release at the ripple crests. The wave-driven water flow through the sediment, thus, was directly linked to the wave-generated sediment topography, and its spatial dimensions. These results show that surface waves cause water filtration through permeable sediments at water depths smaller than half the wavelength. We conclude that surface gravity waves constitute an important hydromechanical process that may convert large areas of the continental shelves into expansive filter systems. Surface gravity waves thereby could affect suspended particle concentration and cycling of matter in the shelf.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号