首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Interaction between Wind and Temperature Fields in the Planetary Boundary Layer for a Spatially Heterogeneous Surface Heat Flux
Authors:Hyoung-Jin Kim  Yign Noh  Siegfried Raasch
Institution:(1) Institut für Meteorologie und Klimatologie der Universität, Hannover, Germany
Abstract:Interaction between wind and temperature fields in the planetary boundary layerfor a spatially heterogeneous surface heat flux has been investigated using large-eddysimulation. It is shown that a substantial difference exists in the wind and temperaturefields, depending on whether the directions of the background wind and the surfaceheat flux variation are parallel or perpendicular.When they are parallel to each other, two-dimensional plumes induced by theheterogeneous surface heat flux are easily destroyed by the background wind,and the velocity field is strongly modified by convective eddies compared tothe case when they are perpendicular to each other. This leads to a substantialdifference in the profiles of turbulent kinetic energy and its flux.It also results in a difference between the two cases in the bulk properties of theplanetary boundary layer, such as the entrainment at the top of the planetary boundarylayer and the drag at the bottom, which have important implications for boundary-layermodelling. The difference between the two cases exists even when the background windspeed is as large as 15.0 m s-1. Meanwhile, the contrast between two cases is weakened by the Coriolis force.
Keywords:Convection  Entrainment  Heterogeneous surface heat flux  Large-eddy simulation  Numerical modelling
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号