首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Digital photogrammetry and kinematic GPS applied to the monitoring of Vulcano Island, Aeolian Arc, Italy
Authors:P Baldi  S Bonvalot  P Briole  M Marsella
Institution:Universitàdi Bologna, Dipartimento di Fisica,;8 viale B. Pichat, 40126 Bologna, Italy. E-mail: IRD, Laboratoire de Géophysique,;2 avenue H. Varagnat, 93143 Bondy, France Institut de Physique du Globe de Paris,;4 place Jussieu, 75005 Paris, France UMR;7580 CNRS, Laboratoire de Sismologie, 4 place Jussieu, 75252 Paris, France Universitàdi Roma 'La Sapienza', DITS,;18 via Eudossiana, 00184 Roma, Italy
Abstract:Digital photogrammetry and kinematic global positioning system (GPS) techniques are investigated and compared over a volcanic area as operational approaches to map the topography and monitor surface displacements. The use of terrestrial and airborne GPS to support the photogrammetric survey allowed for operational and processing time reduction without loss of accuracy. A digital elevation model (DEM) is obtained from the processing of the high-resolution digital imagery survey, which provides detailed information over a large area. The internal accuracy of the derived DEM has been verified by the comparison of two sets of data obtained from imagery acquired in different epochs; the observed root-mean-square error of residuals ranges from a few centimetres to 15 cm depending on the morphological features. Kinematic and pseudo-kinematic GPS surveys are performed to derive accurate 3-D coordinates at monumented benchmarks and accurate elevation profiles along footpaths. The average repeatability of the GPS measurements on benchmarks is 1 cm for measurement durations of 2–3 min. The standard deviation of interpolated vertical coordinates obtained at the crossings of kinematic GPS profiles is 4.3 cm. The high quality of these GPS coordinates justifies their use also for the validation of the photogrammetric DEM. A comparison of 6000 common points provides a standard deviation of residuals of 18 cm. The results show that the deformation pattern of a volcanic area can be rapidly and accurately monitored even in the absence of geodetic benchmarks. The integration of aerial photogrammetry with GPS kinematic surveys may be considered as an optimal approach for deriving high-resolution mapping products to be used in support of studies of volcanic dynamics.
Keywords:deformation  satellite geodesy  topography  volcanic structure
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号