首页 | 本学科首页   官方微博 | 高级检索  
     检索      

对流层-平流层之间过渡层中臭氧含量及其加热率的变化研究
引用本文:王卫国,袁敏,王颢樾,孙绩华,谢应齐,樊雯璇,陈新梅.对流层-平流层之间过渡层中臭氧含量及其加热率的变化研究[J].地球物理学报,2008,51(5):1309-1320.
作者姓名:王卫国  袁敏  王颢樾  孙绩华  谢应齐  樊雯璇  陈新梅
作者单位:1.云南大学 大气科学系, 昆明 650091;2.中国民航飞行学院 空中交通管理学院, 广汉 618307;3.云南省气象科学研究所, 昆明 650034
基金项目:中国气象局气候变化项目,国家自然科学基金,中国气象局开放实验室基金
摘    要:利用1958~2001年共44年的ECMWF资料及参数化方法,计算了对流层顶上、下3 km气层间的臭氧含量及其吸收太阳辐射加热率的时空分布.结果表明: (1) 臭氧分布的空间梯度从赤道指向两极,而加热率则是分别由高纬和低纬指向副热带,这样的经向梯度可能是驱动对流层顶结构变化的一种重要因素;两者空间分布的季节变化显著,但其对应关系并不完全一致,1月和4月的空间结构与7月和10月的相反,随季节调整具有突变现象;东亚及青藏高原是季节变化相对稳定的区域.(2) 在热带对流层顶控制区加热率与臭氧含量呈正相关,而极地对流层顶控制区各季节有所不同,还与太阳赤纬变化相关联;各纬度间加热率季节变化的位相和变率都存在差异,但南半球相对较为一致,最大距平为±2×10-4 K·d-1,北半球则较复杂,最大正距平为4×1010-4 K·d-1;两半球的季节周期位相趋于相反.(3) 除赤道外,臭氧距平的季节变化位相超前于加热率距平2~3月,并且发生在季节变化的调整期;最大距平出现在南极的8月大于0.4 DU,3~4月则小于-0.2 DU,而北极为±0.2 DU.(4) 臭氧含量和加热率的年际与年代际演变关系对应一致,并具有多尺度的结构特征;但两半球及赤道的时空演变差异明显,30° S~30° N间副热带控制区的加热率变幅剧烈,最大距平为±2.5×10-4 K·d-1,高纬和两极的变幅在不同演变期各不相同;臭氧的变幅结构与之相反,北极的最大距平分别大于0.25 DU和小于-0.35 DU.(5) 20世纪70年代以前及70年代中期,两半球的正负距平具有相反的演变结构,而90年代是负距平演变最剧烈的时期.

关 键 词:对流层顶  上对流层下平流层  臭氧  太阳辐射通量吸收率  加热率  
收稿时间:2007-10-30
修稿时间:2008-4-22

A study of ozone amount in the transition layer between troposphere and stratosphere and its heating rate
WANG Wei-Guo,YUAN Min,WANG Hao-Yue,SUN Ji-Hua,XIE Ying-Qi,FAN Wen-Xuan,Chen Xin-Mei.A study of ozone amount in the transition layer between troposphere and stratosphere and its heating rate[J].Chinese Journal of Geophysics,2008,51(5):1309-1320.
Authors:WANG Wei-Guo  YUAN Min  WANG Hao-Yue  SUN Ji-Hua  XIE Ying-Qi  FAN Wen-Xuan  Chen Xin-Mei
Institution:1.Department of Atmosphere Science, Yunnan University, Kunming 650091, China;2.Air Traffic Management College, Civil Aviation Flight University of China, Guanghan 618307, China;3.Yunnan Research Institute of Meteorology, Kunming 650034, China
Abstract:Ozone amount in the 6-km layer near the tropopause and the spatial-temporal distribution of heating rate are calculated, using the 44-yr(1958~2001) data set provided by ECMWF and parameterization. The results show that: (1) the spatial gradient of ozone content distribution is from equatorial to polar areas, while the spatial gradient of the heating rate distribution is from the high-latitude and low-latitude to the subtropical areas. It is likely that such meridional gradient is an important factor which drives the tropopause structure variations. The seasonal variation about the spatial distributions of ozone amount and heating rate is obvious, while they are not fully consistent with each other. The spatial structure in January and April is reverse with that in July and October and abrupt change exists along with season varying. The seasonal change is relatively unobvious in East Asia and Tibetan plateau. (2) The heating rate and ozone amount shows positive correlation in the areas controlled by tropopause in tropics, and this relationship varies with seasons in the areas controlled by polar tropopause. Also this relationship has something to do with the declination; the phase and amplitude of seasonal heating rate variation differ among different latitude areas, while it is more consistent in Southern Hemisphere, and the seasonal variation is also more even, the largest anomaly is ±2×10-4 K·d-1. And the largest anomaly is ±4×10-4 K·d-1 in the Northern Hemisphere. The seasonal phases are generally reverse in two Hemispheres. (3) The seasonal variation of ozone amount anomaly exceeds that of heating rate anomaly 2~3 months in the period of season adjustment, except in the tropical areas; The largest anomaly is greater than 0.4DU in August in Antarctic, it is smaller than -0.2DU in March and April; and it is ±0.2 DU in Arctic. (4) The interannual and interdecadal change of ozone amount and heating rate are correspondent, both show multi-scale characteristics. The differences of variation between two Hemispheres and equatorial areas are obvious. The amplitude of heating rate in the areas between 30°S~30°N is rather large, and the largest anomaly is ±2.5×10-4 K·d-1, the amplitude in higher and polar latitude is different in different periods; while the amplitude of ozone amount shows reverse characteristics. The largest anomaly is greater than 0.25 or smaller than -0.35 in Arctic areas. (5)There are opposite anomaly structures in two Hemispheres before 70′s and mid-70′s in 20th century, while the most remarkable period of the minus anomaly is in 90′s.
Keywords:Tropopause  Upper-troposphere and lower-stratosphere  Ozone  Absorption of solar flux  Heating rate
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号