首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical simulations of mesoscale variability in the Straits of Florida
Authors:Christopher N K Mooers  Jerome Fiechter
Institution:(1) Ocean Prediction Experimental Laboratory (OPEL), Division of Applied Marine Physics (AMP), Rosenstiel School of Marine and Atmospheric Science (RSMAS), University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149-1098, USA
Abstract:The circulation in the Straits of Florida is dominated by the throughflow of the Florida Current, as modified by tidal flows, responses to atmospheric cold front and extratropical cyclone (easterly wave and tropical cyclone) passages in winter (summer), and intrinsic mesoscale variability due to instabilities of the Florida Current front and jet system. Monthly meanders of the Florida Current, persistent oceanic fronts associated with the Florida Current’s baroclinic jet, and frontal eddies shed weekly by the Florida Current are the primary mesoscale features. A limited area model (Princeton Ocean Model: POM) is implemented to cover the Straits of Florida with a curvilinear grid that resolves the mesoscale structure, especially where the baroclinic flow is locked to steep topography in a 90 degree bend of the Straits. Florida Current cyclonic frontal eddies are spawned spontaneously, grow as they translate downstream, interact with shelf waters, and exhibit the same space-time attributes that characterize their observed counterparts, as evidenced by satellite imagery, shipboard synoptic mapping, coastal HF radar, and moored time series. Here, a deeper understanding is attempted for the frontal eddy kinematics and dynamics by examining, for example, their sensitivity to model parameter values, synoptic versus monthly atmospheric forcing, and other determinants of the flow. The mean flow shears are concentrated along the shelfbreak, where these frontal eddies are trapped, favoring the formation of the eddies by mean flow instabilities. In particular, it is found that the Florida Current frontal eddies exist independent of the wind-forcing considered (i.e., no winds, monthly winds, and synoptic (but not mesoscale) winds); however, they are modulated by the synoptic wind-forcing. Nevertheless, intriguingly, the frontal eddies have the same weekly time scale as the weather cycle.
Keywords:Coastal ocean circulation  Numerical simulation  Model validation  Sensitivity studies  Mesoscale variability  Florida Current
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号