首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical implementation of the harmonic modified mild-slope equation
Institution:1. Instituto de Ingeniería-UNAM, Cd. Universitaria, Apdo. Postal 70-472, 04510 D.F., México;2. Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
Abstract:A numerical solver is presented of the modified time-independent mild-slope equation, which incorporates energy dissipation. Using a second-order parabolic approximation, the following external boundary conditions are modelled: open and fully transmitting to both incoming and outgoing waves; partially reflecting, and; fully absorbing. Discretisation of the governing equation and boundary conditions is by means of a second-order accurate central difference scheme. The resulting sparse-banded matrix is solved using an inexpensive banded solver with Gaussian elimination. The numerical predictions are in excellent agreement with the analytical solution for the interaction of non-breaking waves with an array of vertical surface-piercing circular cylinders on a horizontal bed. Results are compared with those for the same array on various seabed topographies. The model is robust and can be used for wave propagation in complex geometries. It has fewer restrictions associated with wave obliqueness at boundaries than traditional models based on the mild-slope equation.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号