首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Corundum from basaltic terrains: a mineral inclusion approach to the enigma
Authors:J Guo  Suzanne Y O'Reilly  William L Griffin
Institution:(1) Key Centre for Geochemical Evolution and Metallogeny of Continents (GEMOC), School of Earth Sciences, Macquarie University, Sydney, NSW 2109, Australia, AU;(2) CSIRO Division of Exploration and Mining, PO Box 136, North Ryde, NSW 2113, Australia, AU
Abstract: This paper investigates the origin of corundum megacrysts that occur in many basaltic terrains, and which are considered to be eroded from basaltic rocks. Geochemical data for over 80 primary mineral inclusions within corundum megacrysts are used to gain a new insight into the petrogenetic history of the corundum megacrysts. A wide spectrum of minerals is present as inclusions in the corundum; the most common are Nb−Ta oxides (such as titaniferous columbite and uranpyrochlore), alkali feldspar, low-Ca plagioclase (albite-oligoclase) and zircon. Rare inclusions include Fe,Cu-sulphide (low in Ni), cobalt-rich spinel, Th,Ce-rich phosphate and uraninite. The similar chemistry of some inclusion minerals from corundum occurring in widely separated areas suggests that the corundum megacrysts in basalts have a similar petrogenesis. Geochemical characteristics of the inclusions indicate a bimodal grouping, which is best explained by a mixing-hybridisation process. This study indicates that the corundum megacrysts are not cogenetic with their basaltic hosts but are crustal fragments accidentally incorporated into the erupting magma. It is suggested that interactions between a silicic component and an intruding carbonatitic or similar Si-poor magma is responsible for Al-oversaturation, resulting in locally distributed lenses of corundum-bearing rock of mixed paragenesis (“hybrid rock hypothesis”). Feldspar exsolution textures provide strong evidence that this hybridisation occurred at mid-crustal levels. Subsequent volcanic eruptions brought the corundum-bearing rocks (later disintegrated in the magma) up to the Earth's surface. This petrogenetic model for corundum megacrysts is experimentally testable. Received: 15 March 1995 / Accepted: 30 June 1995
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号