首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A groundwater vortex hypothesis for mima-like mounds, Laramie Basin, Wyoming
Authors:Richard G Reider  Joseph M Huss  Timothy W Miller
Institution:Department of Geography and Recreation, University of Wyoming, Laramie, WY 82071, USA
Abstract:Mima-like mounds in the Laramie Basin occur where: (1) impervious bedrock (shale) is at a shallow depth (∼ 2–5 m); (2) bedrock is overlain by a thin veneer (∼ 1–4 m) of alluvial gravels; and (3) a strong argillic/calcic or petrocalcic soil caps the landform, typically a terrace. Active and inactive mounds contain churned materials, including pebbles derived from adjacent/subjacent units. The mounds are circular in plan view and lens- or funnel-shaped in cross-section. The strong intermound (premound) soil collapses beneath the mound, is entirely or partly destroyed at its base, or is truncated at the mound edge. Stratigraphic relationships on the youngest terrace of the Laramie River indicate that the inactive mounds are Holocene in age.Sodium concentrations (used as a tracer) in mound material and adjacent/subjacent units suggest that the mounds rotate counterclockwise. This movement may be driven by free spiral vortices (low hydraulic head) in confined (artesian) groundwater flow in alluvium between shallow bedrock and strong surface soil. The vortices (similar to water draining from a bathtub or a whirlpool in a river) may result from enlargements, constrictions, or changes in permeability of the aquifer — or meandering of groundwater flow. Groundwater, dissolved ions, and materials in suspension, or through friction and turbidity, then would move from adjacent high-hydraulic head areas into and down the vortex. In effect, the high head (intermound) areas would act as a pump whereas the vortex (which would form a mound) would act as a turbine — responding, therefore, to energy transformations between groundwater velocity and pressure according to the Bernoulli principle and Newton's Second Law of Motion. Soil or sediment, incapable of being fully moved into and down the vortex, would amass at the land surface as a circular mound that in cross-section would have a lens or funnel (turbine) shape. Computer modelling shows that mounds tend to form over deep bedrock and thick alluvium.The groundwater vortex hypothesis can account for the building of the mound higher at its center, the circular plan view and lens (or funnel) shape in cross-section, the inward spiral of sodium, the churned character of mound material, and the collapse (or truncation) of soils and other units beneath and along mound edges. The hypothesis, however, must not be applied to all other Mima or mima-like mounds, unless vortex motion can be determined and if stratigraphic similarities can be demonstrated.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号