首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Multiscale modeling of ice deformation behavior
Institution:1. Institute for Ship Structural Design and Analysis, Hamburg University of Technology, Germany;2. Dynamics Group, Hamburg University of Technology, Germany;3. Department of Mechanical Engineering, Imperial College London, England, UK;4. Sustainable Arctic Marine and Coastal Technology (SAMCoT), Centre for Research-based Innovation (CRI), Norwegian University of Science and Technology, Norway
Abstract:Understanding the flow of ice in glaciers and polar ice sheets is of increasing relevance in a time of potentially significant climate change. The flow of ice has hitherto received relatively little attention from the structural geological community. This paper aims to provide an overview of methods and results of ice deformation modeling from the single crystal to the polycrystal scale, and beyond to the scale of polar ice sheets. All through these scales, various models have been developed to understand, describe and predict the processes that operate during deformation of ice, with the aim to correctly represent ice rheology and self-induced anisotropy. Most of the modeling tools presented in this paper originate from the material science community, and are currently used and further developed for other materials and environments. We will show that this community has deeply integrated ice as a very useful “model” material to develop and validate approaches in conditions of a highly anisotropic behavior. This review, by no means exhaustive, aims at providing an overview of methods at different scales and levels of complexity.
Keywords:Ice mechanical behavior  Multiscale modeling  Viscoplastic anisotropy  Fabric development
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号