首页 | 本学科首页   官方微博 | 高级检索  
     检索      


New evidence for a glacioeustatic influence on deep water circulation, bottom water ventilation and primary productivity in the South China Sea
Authors:L Lwemark  S Steinke  C-H Wang  M-T Chen  A Müller  L-J Shiau  S-J Kao  S-R Song  H-L Lin  K-Y Wei
Institution:L. Löwemark, S. Steinke, C.-H. Wang, M.-T. Chen, A. Müller, L.-J. Shiau, S.-J. Kao, S.-R. Song, H.-L. Lin,K.-Y. Wei
Abstract:We provide new evidence for the development of a stable estuarine circulation characterized by stagnating water bodies, nutrient recycling and increased primary productivity in the South China Sea (SCS) during glacial intervals. This circulation was caused by the closure of the shallow and narrow straits connecting the SCS in the south and west. Our main evidence is derived from newly measured Mn concentrations and Mn/Al ratios in two sediment cores from the northern and southeastern SCS covering the last 500 ky. Concentrations and Mn/Al ratios of the redox sensitive element Mn show clear glacial–interglacial cycles with maxima during interglacial periods and minima during glacial periods. These cycles indicate ventilation cycles of the bottom water, and are connected to the glacial–interglacial changes in sea level. In contrast, total organic carbon (TOC) concentrations display an opposite pattern with pronounced maxima during glacial times, especially in the southern part of the basin. The variations in TOC can be ascribed to two factors. Firstly, variations in primary productivity are controlled by variations in the intensity of the winter monsoon. Secondly to the degree of preservation of TOC controlled by variations in ventilation, which in turn is ultimately controlled by sea level. Consequently, variations in TOC represent a superimposition of primarily sea level influenced preservation control and winter monsoon driven variations in primary productivity intensity. The decrease in Mn correspond to times when sea level dropped 40–60 m below the present level. The larger amplitude of the variations in TOC and Mn in the southern part of the basin compared to the northern site suggest that oxygen depletion and nutrient recycling was stronger in the parts of the basin situated the furthest away from the only remaining opening to the open Pacific, the Luzon Strait.
Keywords:Bottom water oxygen depletion  South China Sea  Productivity  Organic carbon preservation  Sea level  Monsoon
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号