首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mathematical Modeling of the Hydrodynamic Forces on a Trawl Door
Abstract:Precise control of trawl systems is assumed to be beneficial from both economic and environmental reasons. Using the trawl doors as actuators could increase the amount of available control forces. Adequate mathematical models of the hydrodynamic fores on the trawl doors are needed for control system design and verification. This paper presents a method for mathematical modeling of the hydrodynamic forces on the trawl doors. These forces are divided into steady-state forces and transient effects. The six degrees of freedom (six dof) steady-state hydrodynamic coefficients of a trawl door have been found as a function of its angles of attack and slip, based on wind-tunnel experiments. The coefficients are parameterized for smoothing and computational performance, and methods for extending the validity of the model in terms of orientation and trawl door shape are presented. The transient effects are described as functions of relative accelerations between the trawl door and the ambient water, angular velocities of the trawl door and circulation buildup. These effects are manifestations of variations in the flow around the trawl door and its wake, and a numerical method based on potential theory is employed to investigate them. A computational efficient, nonlinear, state–space model of the hydrodynamic forces is finally proposed. It accounts for steady-state and unsteady hydrodynamic forces and moments in six dof, suitable for trawl control system design and analysis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号