首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Lithospheric structure below transantarctic mountain using receiver function analysis of TAMSEIS data
Authors:P Kumar  Karabi Talukdar  Mrinal K Sen
Institution:1. National Geophysical Research Institute (CSIR), Uppal Road, Hyderabad, 500 007, India
Abstract:The lithospheric structure of Antarctica has been investigated from P- (PRF) and S- receiver functions (SRF) using the seismological data from Trans-Antarctic Mountain Seismic Experiment (TAMSEIS). For the stations deployed on the thick ice sheet, estimation of crustal parameters from PRF may be erroneous as the Moho conversions may interfere with the reverberations within the thick ice sheet. However, the free surface multiples are well observed in PRF. On the other hand, in SRFs, the primary conversions of interest and multiples are separated by the mother S-phase. Therefore, it is advantageous to interpret PRF and SRF jointly for the regions where we have thick low velocity layer at the top such as ice or sediments. The crustal structure and corresponding parameters have already been estimated by various workers, but here we interpret the PRF and SRF jointly to minimize the ambiguity and map the lithospheric architecture below TAM. Our analysis reveals that the average crustal thickness beneath the east Antarctica craton is ~44 km with Vp/Vs ranging between ~1.7 and 1.9. Below Trans-Antarctic Mountain (TAM), the average crustal thickness is ~36 km with higher Vp/Vs of ~1.8–2.0. The rift and the volcanic affected coastal region show erratic depths and Vp/Vs, primarily due to the absence of either primary conversion or multiples in the receiver functions. A small number of stations far from the volcano show that the crust is thinnest (~26 to 34 km thick) in the coastal part. The contribution of this study is the mapping of the lithospheric configuration, not done so far using SRF. The SRF section along a profile spanning E-, W- Antarctica and TAM reveals that the lithospheric thickness in the coast is ~80 km and below TAM it is ~120 km. In the central thick ice cover region, the lithosphere thickens upto ~150 km towards Vostok highlands. The most intriguing feature in our SRF section is that the crust and lithosphere are shallow below TAM compared to the E- Antarctica. Further, we observe a mid-lithospheric low velocity layer confined mostly below TAM, suggesting that the thermal buoyancy could be the prime cause for the upliftment of TAM.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号