首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental Study on the Wake Meandering Within a Scale Model Wind Farm Subject to a Wind-Tunnel Flow Simulating an Atmospheric Boundary Layer
Authors:Nicolas Coudou  Sophia Buckingham  Laurent Bricteux  Jeroen van Beeck
Institution:1.Environmental and Applied Fluid Dynamics Department,von Karman Institute for Fluid Dynamics,Sint-Genesius-Rode,Belgium;2.Fluids-Machines unit, Polytechnic Faculty,University of Mons (UMONS),Mons,Belgium;3.Institute of Mechanics, Materials and Civil Engineering,Université catholique de Louvain (UCL),Louvain-la-Neuve,Belgium
Abstract:The phenomenon of meandering of the wind-turbine wake comprises the motion of the wake as a whole in both horizontal and vertical directions as it is advected downstream. The oscillatory motion of the wake is a crucial factor in wind farms, because it increases the fatigue loads, and, in particular, the yaw loads on downstream turbines. To address this phenomenon, experimental investigations are carried out in a wind-tunnel flow simulating an atmospheric boundary layer with the Coriolis effect neglected. A \(3 \times 3\) scaled wind farm composed of three-bladed rotating wind-turbine models is subject to a neutral boundary layer over a slightly-rough surface, i.e. corresponding to offshore conditions. Particle-image-velocimetry measurements are performed in a horizontal plane at hub height in the wakes of the three wind turbines occupying the wind-farm centreline. These measurements allow determination of the wake centrelines, with spectral analysis indicating the characteristic wavelength of the wake-meandering phenomenon. In addition, measurements with hot-wire anemometry are performed along a vertical line in the wakes of the same wind turbines, with both techniques revealing the presence of wake meandering behind all three turbines. The spectral analysis performed with the spatial and temporal signals obtained from these two measurement techniques indicates a Strouhal number of \(\approx 0.20 - 0.22\) based on the characteristic wake-meandering frequency, the rotor diameter and the flow speed at hub height.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号