首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The stability of transition metal dolomites in carbonate systems: a discussion
Authors:Philip E Rosenberg  Franklin F Foit
Institution:Department of Geology, Washington State University, Pullman, WA 99164, U.S.A.
Abstract:The instability of transition metal dolomites CaR2+(CO3)2 where R2+ is Fe, Co, Ni, Cu, or Zn] and the limited substitution of transition metal cations for Mg in the dolomite structure can be accounted for by the effect of octahedral distortion. For example, trigonal elongation of the Fe octahedron, due to the Jahn-Teller effect, observed in siderite and ankerite, results in elongation of the Ca octahedron which is sensitive to distortion because the radius of Ca2+ is close to the upper limit for octahedral coordination. Co, Ni, Cu, Zn octahedra are also thought to be deformed, relative to Mg octahedra, in carbonates.The free energy of formation (ΔGof) of R2+CO3 becomes more positive with increasing octahedral distortion. Estimated ΔGof(dolomite) as well as stabilities and solubility limits of R2+ in natural and synthetic dolomites suggest a series in order of decreasing stability: Mg >Mn >Zn >Fe >Co >Ni >Cu.ΔGof(est.) for the terminal Fe-dolomite solid solution 72 mol% CaFe(CO3)2] in the system CaCO3-MgCO3-FeCO3 may represent an empirical threshold value for dolomite stability which lies between ΔGof for Mn- and Zn-dolomites. While Zn-dolomite is probably not a stable phase, very extensive solid solution toward CaZn(CO3)2 is to be expected in the system CaCO3-MgCO3-ZnCO3. The tendency for transition metal dolomites to contain excess CaCO3 can also be accounted for in terms of octahedral distortion and AGof.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号