首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Petrographic and chemical characterization of igneous lithic clasts from mesosiderites and howardites and comparison with eucrites and diogenites
Authors:David W Mittlefehldt
Institution:Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90024, U.S.A.
Abstract:Combined petrographic, electron microprobe and instrumental neutron activation analysis (INAA) studies of igneous lithic clasts separated from mesosiderites and howardites and INAA investigation only of whole rock eucrites and diogenites have been performed to help elucidate the differentiation processes that occurred on asteroidal sized bodies. Although similar to eucrites in mineralogy and major element chemistry, trace element abundances in basaltic lithic clasts give evidence for more complex differentiation episodes than have been observed for eucrites. These complex fractionations include sequential melting and expulsion of liquid from the source region and remelting of cumulate materials, followed by a second fractional crystallization episode. Rare earth element (REE) abundances in a basaltic clast from Petersburg suggest that the source region which produced this melt was noticably different from that which produced the eucrites Pasamonte and Bereba.Pyroxenites from mesosiderites show slight enrichments in Sc and Mn when compared with average diogenites. This suggests that the pyroxenites in mesosiderites are not fragments of diogenites sensu stricto. A plagioclase clast from the Johnstown diogenite contains light REE abundances that are not in equilibrium with the pyroxene phase. This implies that some of the plagioclase in diogenites may be a foreign component not directly related to the diogenites. This component probably formed on the same parent body as the diogenites however.The characteristics which are inferred for the heat source are that it was spatially and temporally variable. This suggests that heating of the differentiated meteorite parent bodies may in part have been from outside the parent body.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号