首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the kinetics of volatile loss from chondrites
Authors:Leo Alaerts  Edward Anders
Institution:Enrico Fermi Institute and Department of Chemistry, University of Chicago, Chicago, IL 60637, U.S.A.
Abstract:We have re-examined data by Lipschutz and coworkers on thermal release of T1, Bi, In from primitive chondrites, in order to obtain information on the nature and activation energy (E) of the release processes: desorption, volume diffusion, and decomposition of the host phase. Plausible though not definitive choices may be made in some cases. For the Allende C3 chondrite, the main release for Bi and T1 (80 and 86%) between 400 and 700°C appears to be due to desorption of a surface layer, coupled with grain boundary diffusion as the slow step. The main release of In (80%) above 600°C and the small (10–20%) tails of Bi and T1 between 700 and 1000°C probably represent volume diffusion, with activation energies near 30 kcal/mol. The much smaller E's (2–5 kcal/mol) found for this interval by the Purdue group are artifacts, resulting from their failure to correct the initial concentration for the material lost in the preceding peak. Finally, the residual Bi and T1 remaining at 1000°C seem to represent solid solutions in temperature-resistant phases, such as ‘Q’, the principal carrier of planetary noble gases in the meteorite.This distribution—a small amount in solid solution and a large amount in a surface film—qualitatively agrees with that predicted by Larimer (1973, Geochim. Cosmochim. Acta37, 1603–1623) for condensation from the solar nebula, though some of the substrates may have been sulfides rather than metal.Results for Abee and other primitive meteorites are essentially similar, except for a very abrupt 500°C release of T1 from Krymka (81%) and Bi from Tieschitz (70%). This release may represent decomposition of a thermolabile phase in a late condensate, such as organic matter or phyllosilicates. The presence of such a condensate (‘mysterite’) was inferred previously from the apparent overabundance of T1 and Bi in these meteorites.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号