首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thallium: a sensitive indicator of rock/seawater interaction and of sulfur saturation of silicate melts
Authors:Peter J McGoldrick  Reid R Keays  Bob B Scott
Institution:1. Geology Department, School of Earth Sciences, University of Melbourne, Parkville Victoria, Australia;2. Texas A & M University, College Station TX, U.S.A.
Abstract:Radiochemical neutron activation analysis for Tl in a number of young pillow basalts, hydrothermally altered basalts and associated hydrothermal and hydrogenous Mn crusts from the Mid-Atlantic Ridge and adjacent regions of the North Atlantic indicate that Tl is a sensitive indicator of both S saturation of silicate melts and of rock/seawater interactions. Rb-Cs-K-Tl trend lines for fresh MAR basalts (whose melts remained saturated with S during silicate fractionation) are distinctly different to Hawaiian basalts whose melts lost S during or prior to eruption, but were saturated with S at an earlier stage. Varying degrees of Tl enrichment are found in the hydrogenous Mn nodules (91,000 ppb), hydrothermal Mn crusts (2300–32,000 ppb), palagonitized glass (300–2700 ppb), hydrothermally altered basalts (1140–4560 ppb), and even slightly altered pillow interiors (11–45 ppb) relative to the fresh glasses (6–12 ppb). This enrichment has taken place due to incorporation of Tl into secondary silicate phases along with the alkalis and also due to co-precipitation of Tl with ferromanganese oxides and hydroxides. Thallium enrichment in the hydrothermal products is interpreted as being due to cooling and oxidation of hydrothermal fluids as these approached the sea floor. Haloes of Tl-enriched country rock may occur around sulfide deposits in which seawater has acted as the ore fluid.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号