首页 | 本学科首页   官方微博 | 高级检索  
     检索      

A Study of Eddy Viscosity Coefficient in Numerical Tidal Simulation
作者单位:CHENYongping and LEI ZhiyiCollege of Harbour,Waterway and Coastal Engineering,Hohai University,Nanjing 210098,China
摘    要:Based on the fluid motion equations, the physical meaning of eddy viscosity coefficient and the rationality of the Boussinesq hypothesis are discussed in this paper. The effect of the coefficient on numerical stability is analyzed briefly. A semi-enclosed rectangular sea area, with an orthogonal spur dike, is applied in a 2-D numerical model to study the effect of horizontal eddy viscosity coefficient (AH). The computed result shows that AH has little influence on the tidal level and averaged flow velocity, but has obvious influence on the intensity and the range of return flow around near the spur dike. Correspondingly, a wind-driven current pool and an annular current are applied in a 3-D numerical model respectively to study the effect of vertical eddy viscosity coefficient (Av). The computed result shows that the absolute value of Av is inversely proportional to that of horizontal velocity, and the vertical gradient value of Av determines the vertical distribution of horizontal velocity. The distrib


A Study of Eddy Viscosity Coefficient in Numerical Tidal Simulation
Authors:CHEN Yongping
Abstract:Based on the fluid motion equations, the physical meaning of eddy viscosity coefficient and the rationality of the Boussinesq hypothesis are discussed in this paper. The effect of the coefficient on numerical stability is analyzed briefly. A semi-enclosed rectangular sea area, with an orthogonal spur dike, is applied in a 2-D numerical model to study the effect of horizontal eddy viscosity coefficient (AH). The computed result shows that AH has little influence on the tidal level and averaged flow velocity, but has obvious influence on the intensity and the range of return flow around near the spur dike. Correspondingly, a wind-driven current pool and an annular current are applied in a 3-D numerical model respectively to study the effect of vertical eddy viscosity coefficient (Av). The computed result shows that the absolute value of Av is inversely proportional to that of horizontal velocity, and the vertical gradient value of Av determines the vertical distribution of horizontal velocity. The distribution form of Av is theoretically recommended as a parabolic type, of which the maximum value appears at 0.5 H.
Keywords:tidal flow  numerical simulation  Boussinesq hypothesis  horizontal eddy viscosity coefficient  vertical eddy viscosity coefficient
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《中国海洋工程》浏览原始摘要信息
点击此处可从《中国海洋工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号