首页 | 本学科首页   官方微博 | 高级检索  
     检索      


FAO-56 methodology for determining water requirement of irrigated crops: critical examination of the concepts,alternative proposals and validation in Mediterranean region
Authors:Nader Katerji  Gianfranco Rana
Institution:1. INRA—Unité Mixte de Recherche Environnement et Grandes Cultures, 78850, Thiverval-Grignon, France
2. Consiglio per la Ricerca e la Sperimentazione in Agricoltura (CRA)—Research Unit on Agriculture in Dry Environments, via C. Ulpiani, 5, 70125, Bari, Italy
Abstract:The present study evaluates firstly the ability of the FAO-56 methodology, based on the two-step approach “reference evapotranspiration (ET0)—crop coefficient (K c),” to accurately determine the actual evapotranspiration (ET) of irrigated crops and proposes, secondly, the alternative approaches for improving this determination. The FAO-56 methodology is supported by two hypotheses: (1) ET0 represents all effects of weather and (2) K c varies predominately with specific crop characteristics and only marginally with climate, which enables the transfer of K c standard values among locations and climates. On the base of the theoretical analysis and experimental observations, a critical examination of the previous hypotheses demonstrates that they are not verified by reality. The first hypothesis is not verified for two reasons: (a) The formulation adapted by the Penman–Monteith equation and proposed in FAO-56 methodology for calculating ET0 uses climatic variables determined at a 24-h average scale. However, in principle it is only valid in permanent regime, in other words at least on an hourly scale. (b) The FAO-56-proposed formulation attributes a constant value to the canopy resistance of the reference surface; but in reality, this resistance is variable in relation to the climatic variables. The second hypothesis, concerning the two-step approach, is also not verified because the values of K c largely vary in relation to climatic variables (radiation, air vapour pressure deficit and wind speed). This fact does not support the possibility of the transferability of K c values into locations where the local conditions deviate from the conditions where the adjusted values of K c were determined. The weakness of the ET estimation, observed on several crops cultivated in the Mediterranean region, through the application of the FAO-56 methodology, is the result of errors accumulation, associated with that affects the determination of either ET0 or K c. The present study underlines the advantage of using a one-step approach in the calculation of ET, since it is based on fewer computation steps and, consequently, on fewer error sources than the two-step model. Two models adopting this approach are proposed and validated, one of which can be considered as operational, i.e. it only needs standard meteorological data as input. The use of these models enables an improvement of the ET estimation. This objective is a key component of any strategy to improve agricultural water management in Mediterranean region.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号