首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Variation of Seismic Coda Wave Attenuation in the Garhwal Region, Northwestern Himalaya
Authors:Jayant N Tripathi  Priyamvada Singh  Mukat L Sharma
Institution:1. Department of Earth and Planetary Sciences, University of Allahabad, Allahabad, 211002, India
2. Department of Earthquake Engineering, Indian Institute of Technology, Roorkee, 247667, India
Abstract:Seismic coda wave attenuation ( $ Q_{\text{c}}^{ - 1} $ ) characteristics in the Garhwal region, northwestern Himalaya is studied using 113 short-period, vertical component seismic observations from local events with hypocentral distance less than 250?km and magnitude range between 1.0 to 4.0. They are located mainly in the vicinity of the Main Boundary Thrust (MBT) and the Main Central Thrust (MCT), which are well-defined tectonic discontinuities in the Himalayas. Coda wave attenuation ( $ Q_{\text{c}}^{ - 1} $ ) is estimated using the single isotropic scattering method at central frequencies 1.5, 3, 5, 7, 9, 12, 16, 20, 24 and 28?Hz using several starting lapse times and coda window lengths for the analysis. Results show that the ( $ Q_{\text{c}}^{ - 1} $ ) values are frequency dependent in the considered frequency range, and they fit the frequency power law ( $ Q_{\text{c}}^{ - 1} \left( f \right) = Q_{0}^{ - 1} f^{ - n} $ ). The Q 0 (Q c at 1?Hz) estimates vary from about 50 for a 10?s lapse time and 10?s window length, to about 350 for a 60?s lapse time and 60?s window length combination. The exponent of the frequency dependence law, n ranges from 1.2 to 0.7; however, it is greater than 0.8, in general, which correlates well with the values obtained in other seismically and tectonically active and highly heterogeneous regions. The attenuation in the Garhwal region is found to be lower than the Q c ?1 values obtained for other seismically active regions of the world; however, it is comparable to other regions of India. The spatial variation of coda attenuation indicates that the level of heterogeneity decreases with increasing depth. The variation of coda attenuation has been estimated for different lapse time and window length combinations to observe the effect with depth and it indicates that the upper lithosphere is more active seismically as compared to the lower lithosphere and the heterogeneity decreases with increasing depth.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号