首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Scalar fluxes from urban street canyons. Part I: Laboratory simulation
Authors:Email author" target="_blank">Janet?F?BarlowEmail author  Ian?N?Harman  Stephen?E?Belcher
Institution:(1) Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading, RG, 66BB, U.K
Abstract:Flow over urban surfaces depends on surface morphology and interaction with the boundary layer above. However, the effect of the flow on scalar fluxes is hard to quantify. The naphthalene sublimation technique was used to quantify scalar vertical fluxes out of a street canyon under neutral conditions. For an array of eight canyons with aspect ratio H/W=0.75 (here, H is building height and W is the street width), increased flux was observed in the first two or three canyons for moderate and low roughness upstream. This is consistent with predictions of the length scale for initial adjustment of flow to an urban canopy. The flux was constant after the initial adjustment region and thus dependent only on local geometry. For a street canyon in the lsquoequilibriumrsquo part of the array, each facet of the street canyon was coated with naphthalene to simulate scalar release from street, walls and roof, to evaluate the effect of street canyon geometry on fluxes for H/W=0.25, 0.6, 1 and 2. Fluxes from the roof and downstream wall were considerably larger than fluxes from the street and upstream wall, and only the flux from the downstream wall exhibited a simple decrease with H/W. For each H/W there was a monotonic decrease between downstream wall, street and upstream wall transfer. This suggests that flow decelerates around the recirculation region in the lee of the upstream building, i.e. a recirculating jet rather than a symmetrical vortex. The addition of a second source within the street canyon resulted in reduced fluxes from each facet for H/W>0.25, due to increased concentration of naphthalene in the canyon air.
Keywords:Naphthalene sublimation  Street canyon  Turbulent flux  Urban meteorology  Wind tunnel
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号