首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reliability analysis of composite channels using first order approximation and Monte Carlo simulations
Authors:S Adarsh  M Janga Reddy
Institution:1. Department of Civil Engineering, TKM College of Engineering, Kollam, 691 005, Kerala, India
2. Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, 400 076, India
Abstract:Artificial open channels being costlier infrastructure, their design should ensure reliability along with optimality in project cost. This paper presents reliability analysis of composite channels, considering uncertainty associated with various design parameters such as friction factors, longitudinal slope, channel width, side slope, and flow depth. This study also considers uncertainties of watershed characteristics, rainfall intensity and drainage area to quantify the uncertainty of runoff. For uncertainty modeling, the advanced first order second moment method and Monte Carlo simulation are used and it is found that the results by both approaches show good agreement. Then, a reliability index that can be used to design a composite channel to convey design discharge for a specified risk or probability of failure is presented, and its sensitivity with different channel design parameters are analyzed. To validate the effectiveness of the present approach, the reliability values and safety factors for variable system loading scenario are obtained under static and dynamic environment. The sensitivity analysis shows that flow depth and bed width are the most influencing parameters that affect the safety factor and reliability.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号