首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Northern East Asian low and its impact on the interannual variation of East Asian summer rainfall
Authors:Zhongda Lin  Bin Wang
Institution:1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
2. International Pacific Research Center, and Department of Meteorology, University of Hawai‘i at Mānoa, Honolulu, HI, USA
3. Earth System Modelling Center, Nanjing University of Information Science and Technology, Nanjing, China
Abstract:The strength of the East Asian summer monsoon and associated rainfall has been linked to the western North Pacific subtropical high (WNPSH) and the lower-tropospheric low pressure system over continental East Asia (EA). In contrast to the large number of studies devoted to the WNPSH, little is known about the variability of the East Asian continental low. The present study delineates the East Asian continental low using 850-hPa geopotential height. Since the low is centered over northern EA (NEA), we refer to it as the NEA low (NEAL). We show that the intensity of the NEAL has large interannual variation, with a dominant period of 2–4 years. An enhanced NEAL exhibits a barotropic structure throughout the whole troposphere, which accelerates the summer-mean upper-tropospheric westerly jet and lower-tropospheric monsoon westerly to its south. We carefully identify the anomalous NEAL-induced rainfall anomalies by removal of the tropical heating effects. An enhanced NEAL not only increases rainfall locally in northern Northeast China, but also shifts the East Asian subtropical front northward, causing above-normal rainfall extending eastward from the Huai River valley across central-northern Japan and below-normal rainfall in South China. The northward shift of the East Asian subtropical front is attributed to the following processes without change in the WNPSH: an enhanced NEAL increases meridional pressure gradients and the monsoon westerly along the East Asian subtropical front, which in turn induces a cyclonic shear vorticity anomaly to its northern side. The associated Ekman pumping induces moisture flux convergence that shifts the East Asian subtropical front northward. In addition, the frequent occurrence of synoptic cut-off lows is found to be associated with an enhanced NEAL. Wave activity analysis indicates that the interannual intensity change of the NEAL is significantly associated with the extratropical Polar Eurasian teleconnection, in addition to the forcing of the tropical WNP heating.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号