首页 | 本学科首页   官方微博 | 高级检索  
     检索      


CMIP5 model-simulated onset,duration and intensity of the Asian summer monsoon in current and future climate
Authors:Guangtao Dong  H Zhang  A Moise  L Hanson  P Liang  H Ye
Institution:1. College of Atmospheric Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
2. Shanghai Climate Center, China Meteorological Administration, Shanghai, 200030, China
3. Australian Bureau of Meteorology, GPO Box 1289K, Melbourne, VIC, 3001, Australia
Abstract:A number of significant weaknesses existed in our previous analysis of the changes in the Asian monsoon onset/retreat from coupled model intercomparison project phase 3 (CMIP3) models, including a lack of statistical significance tests, a small number of models analysed, and limited understanding of the causes of model uncertainties. Yet, the latest IPCC report acknowledges limited confidence for projected changes in monsoon onset/retreat. In this study we revisit the topic by expanding the analysis to a large number of CMIP5 models over much longer period and with more diagnoses. Daily 850 hPa wind, volumetric atmospheric precipitable water and rainfall data from 26 CMIP5 models over two sets of 50-year periods are used in this study. The overall model skill in reproducing the temporal and spatial patterns of the monsoon development is similar between CMIP3 and CMIP5 models. They are able to show distinct regional characteristics in the evolutions of Indian summer monsoon (ISM), East Asian summer monsoon (EASM) and West North Pacific summer monsoon (WNPSM). Nevertheless, the averaged onset dates vary significantly among the models. Large uncertainty exists in model-simulated changes in onset/retreat dates and the extent of uncertainty is comparable to that in CMIP3 models. Under global warming, a majority of the models tend to suggest delayed onset for the south Asian monsoon in the eastern part of tropical Indian Ocean and Indochina Peninsula and nearby region, primarily due to weakened tropical circulations and eastward shift of the Walker circulation. The earlier onset over the Arabian Sea and part of the Indian subcontinent in a number of the models are related to an enhanced southwesterly flow in the region. Weak changes in other domains are due to the offsetting results among the models, with some models showing earlier onsets but others showing delayed onsets. Different from the analysis of CMIP3 model results, this analysis highlights the importance of SST warming patterns over both the tropical Pacific and Indian Oceans in affecting the modelling results. The increased atmospheric moisture content offsets some effects of the delayed onset and results in increased rainfall intensity during the active monsoon period. The deficiencies of using rainfall alone in assessing the potential changes of the monsoon system are also shown in this study.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号