首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The benefits of quantifying climate model uncertainty in climate change impacts assessment: an example with heat-related mortality change estimates
Authors:Simon N Gosling  Glenn R McGregor  Jason A Lowe
Institution:(1) School of Geography, The University of Nottingham, Nottingham, UK;(2) School of Environment, The University of Auckland, Auckland, New Zealand;(3) The Met Office Hadley Centre, Exeter, UK
Abstract:The majority of climate change impacts assessments account for climate change uncertainty by adopting the scenario-based approach. This typically involves assessing the impacts for a small number of emissions scenarios but neglecting the role of climate model physics uncertainty. Perturbed physics ensemble (PPE) climate simulations offer a unique opportunity to explore this uncertainty. Furthermore, PPEs mean it is now possible to make risk-based impacts estimates because they allow for a range of estimates to be presented to decision-makers, which spans the range of climate model physics uncertainty inherent from a given climate model and emissions scenario, due to uncertainty associated with the understanding of physical processes in the climate model. This is generally not possible with the scenario-based approach. Here, we present the first application of a PPE to estimate the impact of climate change on heat-related mortality. By using the estimated impacts of climate change on heat-related mortality in six cities, we demonstrate the benefits of quantifying climate model physics uncertainty in climate change impacts assessment over the more common scenario-based approach. We also show that the impacts are more sensitive to climate model physics uncertainty than they are to emissions scenario uncertainty, and least sensitive to whether the climate change projections are from a global climate model or a regional climate model. The results demonstrate the importance of presenting model uncertainties in climate change impacts assessments if the impacts are to be placed within a climate risk management framework.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号