首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Two Fixed Centers: An Exceptional Integrable System
Authors:H Varvoglis  CH Vozikis  K Wodnar
Abstract:It is usually believed that we know everything to be known for any separable Hamiltonian system, i.e. an integrable system in which we can separate the variables in some coordinate system (e.g. see Lichtenberg and Lieberman 1992, Regular and Chaotic Dynamics, Springer). However this is not always true, since through the separation the solutions may be found only up to quadratures, a form that might not be particularly useful. A good example is the two-fixed-centers problem. Although its integrability was discovered by Euler in the 18th century, the problem was far from being considered as completely understood. This apparent contradiction stems from the fact that the solutions of the equations of motion in the confocal ellipsoidal coordinates, in which the variables separate, are written in terms of elliptic integrals, so that their properties are not obvious at first sight. In this paper we classify the trajectories according to an exhaustive scheme, comprising both periodic and quasi-periodic ones. We identify the collision orbits (both direct and asymptotic) and find that collision orbits are of complete measure in a 3-D submanifold of the phase space while asymptotically collision orbits are of complete measure in the 4-D phase space. We use a transformation, which regularizes the close approaches and, therefore, enables the numerical integration of collision trajectories (both direct and asymptotic). Finally we give the ratio of oscillation period along the two axes (the ‘rotation number’) as a function of the two integrals of motion. This revised version was published online in July 2006 with corrections to the Cover Date.
Keywords:collision orbits  integrable systems  periodic orbits  two-fixed centers problem
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号