首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Planetary orbital equations in externally-perturbed systems: position and velocity-dependent forces
Authors:Dimitri Veras  N Wyn Evans
Institution:1. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK
Abstract:The increasing number and variety of extrasolar planets illustrates the importance of characterizing planetary perturbations. Planetary orbits are typically described by physically intuitive orbital elements. Here, we explicitly express the equations of motion of the unaveraged perturbed two-body problem in terms of planetary orbital elements by using a generalized form of Gauss’ equations. We consider a varied set of position and velocity-dependent perturbations, and also derive relevant specific cases of the equations: when they are averaged over fast variables (the “adiabatic” approximation), and in the prograde and retrograde planar cases. In each instance, we delineate the properties of the equations. As brief demonstrations of potential applications, we consider the effect of Galactic tides. We measure the effect on the widest-known exoplanet orbit, Sedna-like objects, and distant scattered disk objects, particularly with regard to where the adiabatic approximation breaks down. The Mathematica code which can help derive the equations of motion for a user-defined perturbation is freely available upon request.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号