首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geology of the southern Ishtar Terra/Guinevere and Sedna Planitae region on Venus
Authors:E R Stofan  J W Head  D B Campbell
Institution:(1) Department of Geological Sciences, Brown University, 02912 Providence, RI, U.S.A.;(2) National Astronomy and Ionosphere Center, 00612 Arecibo, PR, U.S.A.
Abstract:Recent high resolution, high incidence angle Arecibo radar images of southern Ishtar Terra and flanking plains of Guinevere and Sedna on Venus reveal details of topographic features resolved by Pioneer Venus. The high incidence angles of Arecibo images favor the detection of surface roughness-related features, and complement recently obtained low incidence angle Venera 15/16 images in which changes in surface topographic slope are well portrayed. Four provinces have been defined on the basis of radar characteristics in Arecibo images and topography. Volcanism and tectonism are the dominant processes in the mapped area, which has an average age of about 0.5–1.0 billion years (Ivanov et al., 1986). These processes vary in relative significance in the mapped provinces and it is likely that geologic activity has occurred simultaneously in all four provinces. On the basis of stratigraphic evidence, however, a general sequence is proposed which represents the major activity in each area. The low predominantly volcanic plains of Guinevere and Sedna Planitiae are the relatively oldest terrain. A major region of complex tectonic deformation, the Southern Ishtar Transition Zone, postdates much of the low plains and delineates the steep-sloped flanks of Ishtar Terra. Lakshmi Planum is characterized by a distinctive volcanic style (large low edifices, calderas, flanking plains) and at least in part postdates the Southern Ishtar Transition Zone. Relatively recent plains-style volcanism occurs locally in Sedna Planitia and embays the Southern Ishtar Transition Zone. Compressional deformation appears to dominate the mountains of the Ishtar plateau, but the nature of the tectonic deformation in the Southern Ishtar Transition Zone is very complex and likely represents a combination of extension, compression and strikeslip deformation. Arecibo data reveal additional coronae in the lowlands, suggesting that corona formation is an even more widespread process than indicated by the Venera data.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号