首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The use of atmospheric dispersion in optical distance measurement
Authors:J C Owens
Institution:(1) Institutes for Environmental Research, Environmental Science Services Administration, Boulder, Colorado
Abstract:The development of lasers, new electro-optic light modulation methods, and improved electronic techniques have made possible significant improvements in the range and accuracy of optical distance measurements, thus providing not only improved geodetic tools but also useful techniques for the study of other geophysical, meteorological, and astronomical problems. One of the main limitations, at present, to the accuracy of geodetic measurements is the uncertainty in the average propagation velocity of the radiation due to inhomogeneity of the atmosphere. Accuracies of a few parts in ten million or even better now appear feasible, however, through the use of the dispersion method, in which simultaneous measurements of optical path length at two widely separated wavelengths are used to determine the average refractive index over the path and hence the true geodetic distance. The design of a new instrument based on this method, which utilizes wavelengths of6328 ? and3681 ? and3 GHz polarization modulation of the light, is summarized. Preliminary measurements over a5.3 km path with this instrument have demonstrated a sensitivity of3×10 −9 in detecting changes in optical path length for either wavelength using1-second averaging, and a standard deviation of3×10 −7 in corrected length. The principal remaining sources of error are summarized, as is progress in other laboratories using the dispersion method or other approaches to the problem of refractivity correction.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号