首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Stepwise decreases of the Huanghe (Yellow River) sediment load (1950–2005): Impacts of climate change and human activities
Authors:Houjie Wang  Zuosheng Yang  Yoshiki Saito  J Paul Liu  Xiaoxia Sun  Yan Wang  
Institution:aCollege of Marine Geosciences, Ocean University of China, Qingdao 266100, China;bKey Laboratory of Seafloor Science and Exploration Technology (KLSSET), Ocean University of China, Qingdao 266003, China;cGeological Survey of Japan, AIST, Tsukuba 305-8567, Japan;dDepartment of Marine Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA
Abstract:The sediment load delivered from the Huanghe (Yellow River) to the sea has decreased sharply to 0.15 × 109 metric tons per year (0.15 Gt/yr) between 2000 and 2005, and now represents only 14% of the widely cited estimate of 1.08 Gt/yr. The river seems to be reverting to the pristine levels characteristic of the middle Holocene, prior to human intervention. Datasets from 1950 to 2005 from four key gauging stations in the main stream reveal distinct stepwise decreases in sediment load, which are attributed to both natural and anthropogenic impacts over the past 56 yr. Completions of two reservoirs, Liujiaxia (1968) and Longyangxia (1985), in the upper reaches of the river and their joint operations have resulted in stepwise decreases in sediment load coming from the upper reaches. Effective soil conservation practices in the middle reaches since the late 1970s, combined with the operation of the Sanmenxia and Xiaolangdi reservoirs, have also caused stepwise decreases in sediment load at Huayuankou in the middle reaches, but the decrease differs from that observed in the upper reaches. Decrease in precipitation is responsible for 30% of the decrease in sediment load at Huayuankou, while the remaining 70% is ascribed to human activities in the river basin, of which soil conservation practices contribute 40% to the total decrease. Sediment retention within reservoirs accounts for 20% of the total sediment load decrease, although there was notable sediment retention within the Xiaolangdi reservoir from 2000 to 2005. The remaining 10% of the decrease in sediment load is a result of the operation of reservoirs in the upper reaches. In the lower reaches, 20% of the sediment passing Huayuankou has been lost as a result of channel deposition and water abstraction. Soil conservation practices and the operation of reservoirs have lowered the content of coarser sediment (D > 0.05 mm) at Huayuankou, and reduced channel deposition in the lower reaches. In contrast, sediment loss owing to water abstraction in the lower reaches has increased considerably as water consumption for agricultural needs has increased. Therefore, the combined effects of climate change and human activities in the upper, middle, and lower reaches have resulted in stepwise decreases in the sediment load delivered from the Huanghe to the sea. The Huanghe provides an excellent example of the altered river systems impacted by climate change and extensive human activities over the past 56 yr. Further dramatic decreases in sediment load and water discharge in the Huanghe will trigger profound geological, morphological, ecological, and biogeochemical responses in the estuary, delta, and coastal sea.
Keywords:Huanghe (Yellow River)  stepwise decrease  sediment load  climate change  human activity  dam and reservoir
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号