首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fluid evolution during metamorphism of the Otago Schist, New Zealand: (II) Influence of detrital apatite on fluid salinity
Authors:SMITH  & YARDLEY
Institution:Department of Earth Sciences, University of Leeds, Leeds, LS2 9JT , UK
Abstract:Apatite occurs in the zeolite to greenschist facies metamorphic rocks of the Otago Schist, South Island, New Zealand, as both a groundmass constituent and as a hydrothermal phase hosted in metamorphic quartz veins. Groundmass apatite from low-grade rocks, ranging from the zeolite facies to the pumpellyite–actinolite zone, has chloride contents ranging from 0–1.4 wt%, and fluoride contents ranging from 2.2–4.2 wt%, whilst groundmass apatite from the greenschist facies (chlorite to biotite zone) is virtually pure fluorapatite. Vein apatite from all grades is also fluorapatite with little or no chloride. This difference in composition is interpreted as resulting from the preservation of the primary magmatic compositions of detrital Cl-apatite grains, out of equilibrium with the metamorphic fluid, at low grades, whilst higher-grade groundmass apatite and neoformed apatite in quartz veins have compositions in equilibrium with an aqueous metamorphic fluid. The presence of detrital Cl-bearing apatite during the early stages of metamorphism may constitute a significant reservoir of Cl, given the low porosities of compacted sediments undergoing prograde metamorphism. Calculations indicate that the release of Cl from detrital apatite in the Otago Schist, as a result of re-equilibration of apatite with the pore fluid, may have had a significant effect on the salinity of the metamorphic fluid.
Keywords:apatite  fluid salinity  metamorphic fluids  Otago Schist  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号