首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Broadband extinction method to determine atmospheric aerosol optical properties
Authors:JINHUAN QIU
Institution:Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Abstract:The equivalent wavelength ( λ E), at which the aerosol optical depth (AOD) is equal to broadband AOD (BAOD), can change in a wide range from 0.619 μm to 1.575 μm in the usual aerosol conditions. By using the least squares technique and some empirical corrections, a parameterized relationship of λ E with BAOD, Ångström wavelength exponent ( α ), solar zenith angle ( θ 0) and H2O amount is developed. Using this relationship, and based on the strong sensitivity of BAOD on θ 0 when θ 0>70°, the broadband extinction method to derive the spectral AOD and α is further proposed. As shown in comparative simulations to retrieve AOD by the present, Molineaux et al. and Gueymard methods, the present method has the best accuracy in most simulations using Junge, MODTRAN, log‐normal and Deirmendjian aerosol models. A key question of the pyrheliometer method to determine wavelength-dependent AODs is the effect of uncertainty in the aerosol size istribution. It is found that the AOD solution around λ E is less sensitive to the uncertainty. The wavelength exponent α is derived using an assumption of the stable atmospheric turbidity. If the pyrheliometer data from θ 0=85° to 70° are used and the change of the turbidity is ±10%, the error of solution α is usually within ±0.32. If the variation of the turbidity is random, the mean value of a lot of the measurements of α would be very reasonable.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号