首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Traction rheological properties of simulative soil for deep-sea sediment
Authors:QI Cailing  RAO Qiuhua  LIU Qi  MA Wenbo
Institution:College of Civil Engineering and Mechanics;Hunan Key Laboratory of Geomechanics and Engineering Safety;School of Civil Engineering
Abstract:The traction capacity of the mining machine is greatly influenced by the traction rheological properties of the deep-sea sediments. The best simulative soil was prepared for substituting the deep-sea sediment based on the deep-sea sediment collected from the Paci?c C-C mining area. Traction rheological properties of the simulative soil were studied by a home-made test apparatus. In order to accurately describe the traction rheological properties and determine traction rheological parameters, the Newtonian dashpot in Maxwell body of Burgers model was replaced by a self-similarity spring-dashpot fractance and a new rheological constitutive model was deduced by fractional derivative theory. The results show the simulative soil has obvious non-attenuate rheological properties. The transient creep and stable creep rate increase with the traction, but they decrease with ground pressure. The fractional derivative Burgers model are better in describing non-attenuate rheological properties of the simulative soil than the classical Burgers model. For the new traction rheological constitutive equation of the simulative soil, the traction rheological parameters can be obtained by ?tting the tested traction creep data with the traction creep constitutive equation. The ground contact length of track and walking velocity of the mining machine predicted by the traction rheological constitutive equation can be used to take full advantages of the maximum traction provided by the soil and safely improve mining effciency.
Keywords:simulative soil  traction rheological properties  constitutive model  rheological parameters  ground contact length of track  walking velocity
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号