首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Role of advection and penetrative convection in affecting the mixing-height variations over an idealized metropolitan area
Authors:Dale C Barnum  Gandikota V Rao
Institution:(1) HQ Air Weather Service (MAC), Scott Air Force Base, Ill., USA;(2) Dept. of Earth and Atmospheric Sciences, Saint Louis University, Saint Louis, Mo., USA;(3) Present address: HQ 6th WEA WG, Andrews AFB, Md., USA
Abstract:This study deals with the variability of mixing height during daylight hours in the summer months for weak wind regimes. A two-dimensional model was employed using simulated input variables which are quite representative of conditions found over the midwestern United States in late summer and early fall. With the aid of this model and various analytical techniques, the dependence of the urban mixing height on such factors as horizontal advection, downward heat flux across the stable mixing-layer interface, lapse rate in the stable layer, etc., was delineated and compared with actual mixing height variations observed in St. Louis, Missouri during selected days for August, 1972.The experiment indicated the following: (1) A spatially symmetric surface heating profile over a city is accompanied by a similarly symmetric mixing-height profile in the absence of vertical wind shear; (2) When the same heating assumption is invoked and vertically variable wind profiles are introduced, the model-generated mixing-height contours become increasingly asymmetric with vertical wind shear; (3) The modelled mixing heights are more sensitive to temperature fluctuations than to those of wind over the range of speeds studied (wind speeds les4ms–1); (4) Present operational methods of predicting the time of erosion of an inversion (based upon forecast surface temperature ranges and adiabatic diagram considerations) underestimate breakup time by a factor which is proportional to the amount of available downward heat flux from the stable layer into the mixed layer below.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号