首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于格子Boltzmann方法的饱和冻土孔隙成冰介观尺度模拟
引用本文:王情玉,滕继东,钟宇,张升,盛岱超.基于格子Boltzmann方法的饱和冻土孔隙成冰介观尺度模拟[J].岩土力学,2023,44(1):317-326.
作者姓名:王情玉  滕继东  钟宇  张升  盛岱超
作者单位:1. 中南大学 土木工程学院,湖南 长沙 410075;2. 中南大学 高速铁路建造技术国家工程研究中心,湖南 长沙 410075; 3. 悉尼科技大学 土木与环境工程学院,澳大利亚 悉尼
基金项目:国家自然科学基金(No. 52178376,No. 51878665,No. U1834206);湖南省湖湘青年英才项目(No. 2020RC3008);中南大学创新驱动青年人才项目(No. 2020CX034);中南大学中央高校基本科研业务费专项资金(No. 2021zzts0791)。
摘    要:路基冻胀问题严重影响寒区高速铁路的安全服役,而成冰相变过程是解释冻胀机制的关键。基于介观尺度的格子Boltzmann方法,将修正的孔隙水冻结温度算法与焓法固液相变格子Boltzmann模型相结合,模拟了悬浮液滴冻结和冻土孔隙水成冰两个过程,分别揭示了液态水在自由状态和孔隙束缚状态下冰水相变的细观机制。计算结果表明:土体孔隙中冰晶由中心向外生长的过程与悬浮在空气中的液滴冻结过程截然不同,并且孔隙水越接近颗粒表面,其冻结温度越低。相同粒径颗粒按照不同排列方式得到的冻结特征曲线(soil freezing characteristic curves,简称SFCC)具有明显差异;不同粒径的SFCC随着颗粒增大残余水含量逐渐变少,形态更加陡峭。通过与文献试验结果对比,验证了格子Boltzmann方法的有效性,表明该方法能够为研究多孔介质水气迁移与相变过程提供介观尺度的新手段。

关 键 词:格子Boltzmann方法  液滴冻结  冻土  孔隙成冰  数值模拟
收稿时间:2022-02-22

Mesoscale simulation of pore ice formation in saturated frozen soil by using lattice Boltzmann method
WANG Qing-yu,TENG Ji-dong,ZHONG Yu,ZHANG Sheng,SHENG Dai-chao.Mesoscale simulation of pore ice formation in saturated frozen soil by using lattice Boltzmann method[J].Rock and Soil Mechanics,2023,44(1):317-326.
Authors:WANG Qing-yu  TENG Ji-dong  ZHONG Yu  ZHANG Sheng  SHENG Dai-chao
Institution:1. School of Civil Engineering, Central South University, Changsha, Hunan 410075, China; 2. National Engineering Research Center of High-speed Railway Construction Technology, Central South University, Changsha, Hunan 410075, China; 3. School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, Australia
Abstract:The frost heave of subgrade has an important effect on the operation of high-speed railway in cold regions, while the ice-water phase transition is the key to understanding the mechanism of frost heave. The lattice Boltzmann method is applied in this study, which is a mesoscale numerical method. The modified freezing temperature algorithm of pore water is combined with the enthalpy-based lattice Boltzmann phase transition model. Two freezing processes including the freezing of suspended droplets and the formation of pore water into ice in frozen soil are investigated, which aim to reveal the mesoscopic mechanism of the ice-water phase transition in free state and pore-bound state, respectively. The numerical results show that the process of ice crystals growing from the inside to the outside in the pores is completely opposite to the freezing process of droplets suspended in the air, and the pore water has a lower freezing temperature when it is closer to the surface of the soil particles. The soil freezing characteristic curves (SFCCs) differ obviously for the particles with the same size but in different particle arrangements. Meanwhile, the morphology of SFCC becomes steeper with increasing soil particle size, and the residual water content gradually decreases. The numerical results of the ice-water phase transition process are validated by measured data in the literature, which indicate that the lattice Boltzmann method can provide a new tool to study the water-gas migration and phase transformation process in porous media in mesoscale.
Keywords:lattice Boltzmann method  droplet freezing  frozen soil  pore ice formation  numerical simulation  
点击此处可从《岩土力学》浏览原始摘要信息
点击此处可从《岩土力学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号