首页 | 本学科首页   官方微博 | 高级检索  
     检索      

页岩储层物性参数对CO2不同封存机制及封存量的影响
引用本文:尹书郭,杨国栋,冯 涛,马 鑫,曹 伟,黄 冕,郭天晴.页岩储层物性参数对CO2不同封存机制及封存量的影响[J].高校地质学报,2023,29(1):37-46.
作者姓名:尹书郭  杨国栋  冯 涛  马 鑫  曹 伟  黄 冕  郭天晴
作者单位:1. 武汉科技大学 资源与环境工程学院,武汉 430081; 2. 中国地质调查局 水文地质环境地质调查中心,保定 071051; 3. 中国石化 中原油田濮东采油厂地质研究所,濮阳 457001
基金项目:国家重点研发计划项目(2019YFE0100100);;湖北省自然科学基金(2019CFB451);;海洋地质资源湖北省重点实验室开放基金(MGR202003);
摘    要:CO2增强页岩气开采技术(CO2-ESGR)一方面可提高CH4产量,另一方面又可实现CO2地质封存。为了分析页岩储层物性参数对CO2封存机制的影响,文章以鄂尔多斯盆地延长组页岩为研究对象,采用CMG-GEM软件建立双孔双渗均质模型,分析了CO2-ESGR中页岩储层垂直渗透率与水平渗透率之比(Kv/Kh)、含水饱和度和孔隙度对不同CO2封存机制封存量的影响;并设计了27组正交试验采用极差分析法比较了三种因素的影响程度。研究表明,Kv/Kh在0.1~1范围增大会增加不同CO2封存机制的封存量,封存总量最大可增加69.96%,其中吸附封存量最大可增加97.96%,受到影响最大;含水饱和度在0~0.9范围增大引起CO2封存总量先增加后减小,封存总量最大可减少67.12%,其中溶解封存量最大可减少83.35%,范围波动最大;页岩储层孔隙度在0.1~0.99范围增大会导致CO2封存总量减少,封存总量最大...

关 键 词:CO2地质封存  页岩  物性参数  封存机制  数值模拟

Effects of Physical Parameters of Shale on CO2 Storage Capacity withDifferent Mechanisms
YIN Shuguo,YANG Guodong,FENG Tao,MA Xin,CAO Wei,HUANG Mian,GUO Tianqing.Effects of Physical Parameters of Shale on CO2 Storage Capacity withDifferent Mechanisms[J].Geological Journal of China Universities,2023,29(1):37-46.
Authors:YIN Shuguo  YANG Guodong  FENG Tao  MA Xin  CAO Wei  HUANG Mian  GUO Tianqing
Institution:1. College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; 2. Center for Hydrogeology and Environmental Geology of China Geological Survey, Baoding 071051, China; 3. Institute of Geology of Pudong Oil Production Plant, Sinopec Zhongyuan Oilfield, Puyang 457001, China;
Abstract:CO2 enhanced shale gas recovery (CO2-ESGR) can not only increase CH4 production, but also store CO2. In order to investigate the effects of physical parameters of shale on CO2 sequestration mechanisms, a dual-porosity, dual-permeability homogeneous model was established using CMG-GEM based on the shale of Yanchang Formation in Ordos Basin. This study analyzed the effects of vertical permeability to horizontal permeability ratio (Kv/Kh), water saturation and porosity of shale on CO2 storage capacity with different mechanisms in CO2-ESGR. Moreover, 27 sets of orthogonal tests were designed to investigate the extent of influence of these three factors by range analysis. The results showed that Kv/Kh increase in the range of 0.1 to 1 leads to enhanced CO2 storage capacity with different mechanisms, and the maximum storage capacity can increase by 69.96%, of which the adsorption storage capacity can increase by 97.96%. Water saturation increase in the range of 0-0.9 induces the total CO2 storage to show an increase first and then a decrease. The maximum storage capacity can reduce by 67.12%, of which the dissolved storage capacity can reduce by 83.35%, with the largest range fluctuation. Shale porosity increase in the range of 0.1- 0.99 leads to the reduction of total CO2 storage capacity, and the maximum storage capacity can reduce by 95.38%, of which the adsorption storage capacity can reduce by 99.99%. Range analysis showed that water saturation has the largest impact on the amount of structural trapping, residual trapping and solubility trapping, porosity has the largest impact on total CO2 storage capacity and adsorption storage capacity, and Kv/Kh has the least effect on CO2 storage capacity with different mechanisms. For CO2 storage in shale reservoirs, shale with low water saturation, low-porosity and high Ky/Kh ratio is suggested to obtain the maximum storage capacity.
Keywords:CO2 geological storage  shale  physical parameter  sequestration mechanism  numerical simulation  
点击此处可从《高校地质学报》浏览原始摘要信息
点击此处可从《高校地质学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号