首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical simulation of deep convective cloud seeding using liquid carbon dioxide
Authors:M Najafi  F Mohammad-Hosseinzadeh
Institution:1. Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
Abstract:In this study, a one-dimensional transient cumulonimbus cloud is modeled to be seeded by liquid CO2. The model includes microphysical and dynamical processes associated with glaciogenic seeding by homogenous ice nucleation and two thermal terms associated with seeding by ?90 ºC liquid CO2. For this model, the study concentrates on five types of hydrometeors, namely, cloud droplet, cloud ice, snow, hail/graupel, and rain. Point and horizontal seeding methods are implemented to observe their implications for rainfall enhancement, amount of hail/graupel production, vertical cloud extension, and radar’s reflectivity. In addition, the seeding temperature effects on the rainfall and microphysical processes are investigated. The results of the study show that, the rainfall enhancement and rainfall intensity in the point seeding case are more than those in the horizontal seeding. Moreover, the study reveals that, there is a vertical cloud extension enhancement of 0.5 km for clouds with top height of 10.5 km. The most important sources of the rain water production are found to be the accretion of cloud water by rain (P RACW) and by snow (P SACW), and for the graupel production is dry growth of the graupel (P GDRY). The results of this study are confirmed by the results of other investigators and are found to be comparable with the recorded data at rain gauge stations.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号