首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modal time-series structure in a shallow-water environment [HudsonCanyon region]
Authors:Knobles  DP Westwood  EK Le Mond  JE
Institution:Appl. Res. Lab., Texas Univ., Austin, TX;
Abstract:The broad-band acoustic characterization of the Hudson Canyon region off the New Jersey Continental Shelf is studied with an analysis of pressure time series generated by small explosive sources and recorded on a vertical line array (VLA). The average water depth is about 72 m and the average sound-speed profile (SSP) is downward-refracting over the midportions of the water column. The seabed is characterized by sediment layers possessing sand-like characteristics. The sound-speed structure of the water column and the seabed structure create distinguishing modal features in the impulse response in the 250-500-Hz hand. The details of the depth and range dependence of the time series on the VLA are sensitive to small perturbations of the structure of the upper layer of the SSP, the water depth, and the seabed structure. This sensitivity of the acoustic field is investigated using a broad-band range-dependent normal mode model called NAUTILUS. The representation of the spatial and temporal structure of the time series in terms of a modal structure reveals several unique effects of the SSP and the geoacoustic structure of the bottom on the group velocity of the modes over a large bandwidth. Individual modes can be identified in the measured data using direct data-simulation comparisons. Cross-correlation values between data and simulations in a 155-ms time window generally vary from 0.7 to 0.9 for sensors below the thermocline but are much smaller for sensors above the thermocline
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号