首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Yields of Nucleosynthesis from massive and intermediate mass stars and constraints on their final evolution
Authors:D C V Mallik  Sushma V Mallik
Institution:(1) Indian Institute of Astrophysics, 560 034 Bangalore
Abstract:Nucleosynthetic yields and production rates of helium and heavy elements are derived using new initial mass functions which take into account the recent revisions in O star counts and the stellar models of Maeder (1981a, b) which incorporate the effects of massloss on evolution. The current production rates are significantly higher than the earlier results due to Chiosi & Caimmi (1979) and Chiosi (1979), and a near-uniform birthrate operating over the history of the galactic disc explains the currently observed abundances. However, the yields are incompatibly high, and to obtain agreement it is necessary to assume that stars above a certain mass do not explode but proceed to total collapse. Further confirmation of this idea comes from the consideration of the specific yields and production rates of oxygen, carbon and iron and the constraints imposed by the observational enrichment history in the disc as discussed by Twarog & Wheeler (1982). Substantial amounts of4He and14C, amongst the primary synthesis species, are contributed by the intermediate mass stars in their wind phases. If substantial numbers of them exploded as Type I SN, their contribution to the yields of12C and56Fe would be far in excess of the requirements of galactic nucleosynthesis. Either efficient massloss precludes such catastrophic ends for these stars, or the current stellar models are sufficiently in error to leave room for substantial revisions in the specific yields. The proposed upward revision of the12C (α,γ)16O rate may produce the necessary changes in stellar yields to provide a solution to this problem. Stars that produce most of the metals in the Galaxy are the same ones that contribute most to the observed supernova rate.
Keywords:stars  nucleosynthesis  stars  birthrate  stars  intermediate mass  Supernovae  Type I
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号