首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geographic variations in shell growth rates of the mussel Diplodon chilensis from temperate lakes of Chile: Implications for biodiversity conservation
Authors:Claudio Valdovinos  Pablo Pedreros
Institution:aCenter of Environmental Sciences EULA-Chile, University of Concepcion, Casilla 160-C, Concepción, Chile;bPatagonian Ecosystems Research Center (CIEP), Coyhaique, Chile
Abstract:The Chilean lake district includes diverse lentic ecosystems along ca. 700 km of the country (36°–43°S), including the “Nahuelbutan lakes”, “Araucanian lakes” and “Chiloe lakes”. This area is recognized as an important “hot spot” of benthic freshwater biodiversity in Southern South America. In Chilean temperate lakes, increased nutrient loads of P and N caused eutrophication, particularly in the Nahuelbutan Lakes. The freshwater Hyriidae mussel Diplodon chilensis (Gray, 1828) which is one of the most abundant species in Chilean temperate lakes, is known to be very susceptible to eutrophication. This species presents a clear reduction in its geographic ranges and is considered to be a threatened species in many Chilean lakes. In this study, we used a correlative approach to determine how eutrophication-driven changes in the food supply and in geographical parameters of different Chilean lakes affected the shell growth rates of D. chilensis. The results obtained from sclerochronological analyses of the mussel shells suggest an association with a group of environmental variables, including geographical types (negative), such as latitude and altitude, and limnological types (positive), especially phosphorous and turbidity. However, the D. chilensis populations under extreme conditions of turbidity in eutrophic and hypertrophic lakes are extinct or nearly so. The high positive correlation of the mean D. chilensis growth rates with orthophosphate (R=0.76; P<0.05), in relation to dissolved inorganic nitrogen, suggests that P is the major limiting factor of the primary productivity in Chilean temperate lakes. We discuss some implications of our results in terms of the conservation of biodiversity in temperate lake ecosystems at different taxonomic levels.
Keywords:Chilean temperate lakes  Freshwater mussel  Diplodon chilensis  Sclerochronology  Shell growth rates  Nutrient loads  Conservation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号