首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An integrated method for resolving the seismic complex near-surface problem
Authors:MN Al-Ali  DJ Verschuur
Institution:Delft University of Technology, Faculty of Applied Sciences, PO Box 5046, 2600 GA Delft, the Netherlands
Abstract:We describe an integrated method for solving the complex near‐surface problem in land seismic imaging. This solution is based on an imaging approach and is obtained without deriving a complex near‐surface velocity model. We start by obtaining from the data the kinematics of the one‐way focusing operators (i.e. time‐reversed Green's functions) that describe propagation between the acquisition surface and a chosen datum reflector using the common‐focus‐point technology. The conventional statics solutions obtained from prior information about the near surface are integrated in the initial estimates of the focusing operators. The focusing operators are updated iteratively until the imaging principle of equal traveltime is fulfilled for each subsurface gridpoint of the datum reflector. Therefore, the seismic data is left intact without any application of time shifts, which makes this method an uncommitted statics solution. The focusing operators can be used directly for wave‐equation redatuming to the respective reflector or for prestack imaging if determined for multiple reflecting boundaries. The underlying velocity model is determined by tomographic inversion of the focusing operators while also integrating any hard prior information (e.g. well information). This velocity model can be used to perform prestack depth imaging or to calculate the depth of the new datum level. We demonstrate this approach on 2D seismic data acquired in Saudi Arabia in an area characterized by rugged topography and complex near‐surface geology.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号