首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Brittle faulting in the Rawil depression: field observations from the Rezli fault zones, Helvetic nappes, Western Switzerland
Authors:Deta Gasser  Neil S Mancktelow
Institution:1. Department of Earth Sciences, University of Graz, Universit?tsplatz 2, 8010, Graz, Austria
2. Geological Institute, ETH Zürich, 8092, Zürich, Switzerland
Abstract:The Helvetic nappes in the Swiss Alps form a classic fold-and-thrust belt related to overall NNW-directed transport. In western Switzerland, the plunge of nappe fold axes and the regional distribution of units define a broad depression, the Rawil depression, between the culminations of Aiguilles Rouge massif to the SW and Aar massif to the NE. A compilation of data from the literature shows that, in addition to thrusts related to nappe stacking, the Rawil depression is cross-cut by four sets of brittle faults: (1) NE-SW striking normal faults, (2) NW-SE striking normal faults and joints, (3) ENE-WSW striking and (4) WNW-ESE striking normal plus dextral oblique-slip faults. Fault set 1 was probably initiated during sedimentation and reactivated during nappe stacking, whereas the other fault sets formed after emplacement of the Helvetic nappes. We studied in detail two well-exposed parallel fault zones from set 4, the Rezli fault zones (RFZ) in the Wildhorn Nappe. They are SW-dipping oblique-slip faults with a total displacement across the two fault zones of ~200 m vertically and ~680 m horizontally. The fault zones crosscut four different lithologies: limestone, intercalated marl and limestone, marl and sandstone. The internal architecture of the RFZ strongly depends on the lithology in which they developed. In the limestones, they consist of extension veins, stylolites, cataclasites and cemented gouge, in the intercalated marls and limestones of shear zones, brittle fractures and chaotic folds, in the marls of anastomosing shear zones, pressure solution seams and veins and in the sandstones of coarse breccia, brittle faults and extension veins. Sharp, discrete fault planes within the broader fault zones cross-cut all lithologies. Fossil fault zones in the Rezli area can act as a model for studying processes still occurring at deeper levels in this seismically active region.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号