首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Low-Temperature Plasticity of Naturally Deformed Calcite Rocks
作者姓名:Klaus  WEBER
作者单位:Institute of
摘    要:Optical, cathodoluminescence and transmission electron microscope (TEM) analyses were conducted on four groups of calcite fault rocks, a cataclastic limestone, cataclastic coarse-grained marbles from two fault zones, and a fractured mylonite. These fault rocks show similar microstructural characteristics and give clues to similar processes of rock deformation. They are characterized by the structural contrast between macroscopic cataclastic (brittle) and microscopic mylonitic (ductile) microstructures. Intragranular deformation microstructures (i.e. deformation twins, kink bands and microfractures) are well preserved in the deformed grains in clasts or in primary rocks. The matrix materials are of extremely fine grains with diffusive features. Dislocation microstructures for co-existing brittle deformation and crystalline plasticity were revealed using TEM. Tangled dislocations are often preserved at the cores of highly deformed clasts, while dislocation walls form in the transitions to the fine-grained


Low-Temperature Plasticity of Naturally Deformed Calcite Rocks
Authors:LIU Junlai
Institution:LIU Junlai Department of Geology,Jilin University,Changchun,ChinaKlaus WEBERInstitute of Geology and Dynamics of the Lithosphere,University of Goettingen,Goettingen,Germany
Abstract:Optical, cathodoluminescence and transmission electron microscope (TEM) analyses were conducted on four groups of calcite fault rocks, a cataclastic limestone, cataclastic coarse‐grained marbles from two fault zones, and a fractured mylonite. These fault rocks show similar microstructural characteristics and give clues to similar processes of rock deformation. They are characterized by the structural contrast between macroscopic cataclastic (brittle) and microscopic mylonitic (ductile) microstructures. Intragranular deformation microstructures (i.e. deformation twins, kink bands and microfractures) are well preserved in the deformed grains in clasts or in primary rocks. The matrix materials are of extremely fine grains with diffusive features. Dislocation microstructures for co‐existing brittle deformation and crystalline plasticity were revealed using TEM. Tangled dislocations are often preserved at the cores of highly deformed clasts, while dislocation walls form in the transitions to the fine‐grained matrix materials and free dislocations, dislocation loops and dislocation dipoles are observed both in the deformed clasts and in the fine‐grained matrix materials. Dynamic recrystallization grains from subgrain rotation recrystallization and subsequent grain boundary migration constitute the major parts of the matrix materials. Statistical measurements of densities of free dislocations, grain sizes of subgrains and dynamically recrystallized grains suggest an unsteady state of the rock deformation. Microstructural and cathodoluminescence analyses prove that fluid activity is one of the major parts of faulting processes. Low‐temperature plasticity, and thereby induced co‐existence of macroscopic brittle and microscopic ductile microstructures are attributed to hydrolytic weakening due to the involvement of fluid phases in deformation and subsequent variation of rock rheology. During hydrolytic weakening, fluid phases, e.g. water, enhance the rate of dislocation slip and climb, and increase the rate of recovery of strain‐hardened rocks, which accommodates fracturing.
Keywords:calcite rocks  low-temperature deformation  fluid phase  fracturing  crystalline plasticity
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《Acta Geologica Sinica》浏览原始摘要信息
点击此处可从《Acta Geologica Sinica》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号