首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Applying different scenarios for landslide spatial modeling using computational intelligence methods
Authors:Alireza Arabameri  Hamid Reza Pourghasemi  Mojtaba Yamani
Institution:1.Department of Geomorphology,Tarbiat Modares University,Tehran,Iran;2.Department of Natural Resources and Environmental Engineering, College of Agriculture,Shiraz University,Shiraz,Iran;3.Physical Geography (Geomorphology), Faculty of Geography,University of Tehran,Tehran,Iran
Abstract:Landslides every year impose extensive damages to human beings in various parts of the world; therefore, identifying prone areas to landslides for preventive measures is essential. The main purpose of this research is applying different scenarios for landslide susceptibility mapping by means of combination of bivariate statistical (frequency ratio) and computational intelligence methods (random forest and support vector machine) in landslide polygon and point formats. For this purpose, in the first step, a total of 294 landslide locations were determined from various sources such as aerial photographs, satellite images, and field surveys. Landslide inventory was randomly split into a testing dataset 70% (206 landslide locations) for training the different scenarios, and the remaining 30% (88 landslides locations) was used for validation purposes. To providing landslide susceptibility maps, 13 conditioning factors including altitude, slope angle, plan curvature, slope aspect, topographic wetness index, lithology, land use/land cover, distance from rivers, drainage density, distance from fault, distance from roads, convergence index, and annual rainfall are used. Tolerance and the variance inflation factor indices were used for considering multi-collinearity of conditioning factors. Results indicated that the smallest tolerance and highest variance inflation factor were 0.31 and 3.20, respectively. Subsequently, spatial relationship between classes of each landslide conditioning factor and landslides was obtained by frequency ratio (FR) model. Also, importance of the mentioned factors was obtained by random forest (RF) as a machine learning technique. The results showed that according to mean decrease accuracy, factors of altitude, aspect, drainage density, and distance from rivers had the greatest effect on the occurrence of landslide in the study area. Finally, the landslide susceptibility maps were produced by ten scenarios according to different ensembles. The receiver operating characteristics, including the area under the curve (AUC), were used to assess the accuracy of the models. Results of validation of scenarios showed that AUC was varying from 0.668 to 0.749. Also, FR and seed cell area index indicators show a high correlation between the susceptibility classes with the landslide pixels and field observations in all scenarios except scenarios 10RF and 10SVM. The results of this study can be used for landslides management and mitigation and development activities such as construction of settlements and infrastructure in the future.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号