首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Separate and Combined Effects of Estuarine Stress Gradients and Disturbance on Oyster Population Development on Restored Reefs
Authors:Elizabeth A Salewski  C  Edward Proffitt
Institution:1.Environmental Sciences Program and Department of Biological Sciences,Atlantic University, c/o Harbor Branch Oceanographic Institution,Florida,USA;2.Department of Integrative Biology,University of South Florida,Tampa,USA
Abstract:Disturbance combined with the effects of multiple stress gradients can produce biotic outcomes that are complex and perhaps not predictable based on knowledge of the individual stress variables. We analyzed oyster (Crassostrea virginica) colonization of novel substrate via structural equation modeling (SEM) to test cause-and-effect multivariate models posed a priori as hypotheses. We separately analyzed long-term data on water quality (WQ), canal flow, and rainfall to determine drivers of chlorophyll a for use in the oyster SEM. The best oyster SEM for adult (R 2 = 0.74) and small <20-mm (R 2 = 0.48) oyster abundances combined WQ stress gradients produced by normal canal flow with disturbance caused by extremely high flow. There was a ?0.26 direct negative effect of increasing salinity during normal canal flow on the small oyster size class possibly reflecting undocumented increases in marine predators and a negative total effect (negative indirect + direct effects) of the salinity gradient on adult oysters. Very low salinity occurring during extreme (disturbance) canal flows produced large negative direct and total effects on small oysters, but no significant total effect for adult oysters. Chlorophyll a (Chl-a) during normal canal flow had negative total effects on small oysters but positive total effects on adult oysters. The effect of max Chl-a on adult oysters was strongly negative during disturbance-level canal flow. Turbidity during normal canal flow had no effect on small or adult oysters. However, during disturbance flows, the maximum turbidity had strong negative effects. Stress and disturbance from freshwater releases impacted oyster recruitment and survival, affecting the colonization and growth of oysters.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号