首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Strain localisation in bimineralic rocks: Experimental deformation of synthetic calcite–anhydrite aggregates
Authors:Auke Barnhoorn  Misha Bystricky  Karsten Kunze  Luigi Burlini and Jean-Pierre Burg
Institution:

Geologisches Institut, Sonneggstrasse 5, ETH-Zürich, CH-8092 Zürich, Switzerland

Abstract:Deformation of synthetic calcite–anhydrite aggregates to large shear strains (up to γ = 12.4 at 600 °C, 300 MPa confining pressure and a constant angular displacement rate corresponding to a shear strain rate of 10− 3 s− 1) resulted in the first experimental observation of strain localisation from initially homogeneous rocks. In contrast to experiments on pure calcite and anhydrite, which deformed homogeneously to large strains (γ ≥ 5), all experiments on calcite–anhydrite mixtures resulted in heterogeneous deformation at γ > 1 and the formation of narrow localised bands in the microstructures at γ > 4. In these bands, the amount of strain is at least twice as large as in the rest of the sample and individual grains of the same phase cluster and align, thereby forming microstructural layering similar to planar fabrics in natural mylonites. A switch in deformation mechanism in anhydrite from dislocation creep to diffusion creep and/or grain boundary sliding occurs simultaneously with strain localisation. It is concluded that deformation-induced heterogeneous phase distributions cause local strength differences initiating strain localisation in the calcite–anhydrite mixtures. The study suggests that the presence of two phases in combination with a change in deformation mechanism may be responsible for strain localisation in natural poly-mineralic mylonites.
Keywords:torsion  large strain  heterogeneous deformation  deformation mechanism  softening
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号