首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The effect of particle shape and grain‐scale properties of shale: A micromechanics approach
Authors:J A Ortega  F‐J Ulm  Y Abousleiman
Institution:1. Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.;2. Poromechanics Institute, University of Oklahoma, Norman, OK 73019, U.S.A.
Abstract:Traditional approaches for modeling the anisotropic elasticity response of the highly heterogeneous clay fabric in shale have mainly resorted to geometric factors such as definitions of particles shapes and orientations. However, predictive models based on these approaches have been mostly validated using macroscopic elasticity data. The recent implementation of instrumented indentation aimed at probing nano‐scale mechanical behaviors has provided a new context for characterizing and modeling the anisotropy of the porous clay in shale. Nanoindentation experimental data revealed the significant contribution of the intrinsic anisotropy of the solid clay to the measured elastic response. In this investigation, we evaluate both the effects of geometric factors and of the intrinsic anisotropic elasticity of the solid clay phase on the observed anisotropy of shale at multiple length scales through the development of a comprehensive theoretical micromechanics approach. It was found that among various combinations of these sources of anisotropy, the elastic response of the clay fabric represented as a granular ensemble of aligned effective clay particles with spherical morphology and anisotropic elasticity compares satisfactorily to nanoindentation and ultrasonic pulse velocity measurements at nano‐ and macroscopic length scales, respectively. Other combinations of sources of anisotropy could yield comparable predictions, particularly at macroscopic scales, at the expense of requiring additional experimental data to characterize the morphology and orientations of particles. Copyright © 2009 John Wiley & Sons, Ltd.
Keywords:micromechanics  nanogranular  nanoindentation  anisotropy  shale
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号