首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Terrigenous transportation to the Okinawa Trough and the influence of typhoons on suspended sediment concentration
Authors:Changwei Bian  Wensheng Jiang  Dehai Song
Institution:1. Guangdong Province Key Laboratory for Coastal Ocean Variation and Disaster Prediction Technologies, Guangdong Ocean University, Zhanjiang 524088, China;2. Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;3. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
Abstract:The source and transport mechanisms of land-derived Okinawa Trough sediments were studied using the field data of temperature, salinity and turbidity in the East China Seas. The results suggest that there are two primary sediments sources from the Chinese Mainland to the Okinawa Trough: one is the Old Huanghe River submarine delta, and the other is the Changjiang River sediments, which are distributed at the Changjiang River estuary and the off-coast of Zhejiang and Fujian provinces. It is difficult for the Huanghe River suspended sediments to arrive in the Okinawa Trough via the new estuary. Although the Taiwan warm current blocks the seaward terrigenous transportation to a certain extent, part of the coastal suspended sediments are transported to the outer shelf. Suspended particulate matter is unable to get through the barrier of the Kuroshio Current under normal conditions. However, episodic events, such as winter storms, internal-tidal waves and turbidity flows, are capable of transporting suspended particulate matter into the Okinawa Trough. The super typhoon “Ewiniar” induced strong waves and influenced the thermocline depth and suspended sediment concentration of the East China Seas. The typhoon-induced waves pushed the thermocline depth down to around 40 m and caused the resuspension of large volumes of sediments in its path. In the other East China Seas regions, the typhoon-induced swells deepened the thermocline depth by about 5 m and increased suspended sediment concentrations. The typhoon effect on suspended sediment concentration of the East China Seas disappeared within 2 weeks.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号