首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nonlinear soil response as a natural passive isolation mechanism-the 1994 Northridge, California, earthquake
Authors:MD Trifunac  MI Todorovska
Institution:Civil Engineering Department, University of Southern California, Los Angeles, CA 90089-2531, USA
Abstract:The spatial relationship between areas with severely damaged (red-tagged) buildings and areas with large strains in the soil (indicated by reported breaks in the water distribution system), observed during the 1994 Northridge earthquake, is analysed. It is shown that these areas can be separated almost everywhere. Minimal overlapping is observed only in the regions with very large amplitudes of shaking (peak ground velocity exceeding about 150 cm s−1). One explanation for this remarkable separation is that the buildings on ‘soft’ soils, which experienced nonlinear strain levels, were damaged to a lesser degree, possibly because the soil absorbed a significant portion of the incident seismic wave energy. As a result, the total number of severely damaged (red-tagged) buildings in San Fernando Valley, Los Angeles and Santa Monica may have been reduced by a factor of two or more. This interpretation is consistent with the recorded peak accelerations of strong motion in the same area. It is concluded that significant reduction in the potential damage to wood frame single family dwellings may be expected in areas where the soil experiences ‘large’ strains (beyond the linear range) during strong earthquake shaking, but not significant differential motions, settlement or lateral spreading, near the surface.
Keywords:Northridge earthquake  damage  red-tagged buildings  water pipe breaks  ground strains  nonlinear soil response  passive isolation  structural control
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号