首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An effective wave-trapping system
Authors:Keh-Han Wang  Xugui Ren
Abstract:This is a theoretical study of a breakwater-seawall wave-trapping system. The breakwater, being flexible, porous and thin beam-like, is held fixed in the sea bed and idealized as one-dimensional beam of uniform flexural rigidity and uniform mass per unit length. The seawall, being vertical, rigid and impermeable, is located behind the breakwater by a distance of L. The velocity potentials of the wave motion are coupled with the equation of motion of the breakwater. Analytical solutions in closed forms are obtained for the reflected and transmitted velocity potentials together with the displacement of the breakwater. The free-surface elevation, hydrodynamic forces acting on both the breakwater and the seawall are determined. It is found that the values of L, at which the minimum reflected-wave amplitudes reach, are in the range of λ to λ for breakwaters with different rigidity and permeability. It is shown that, when the spacing L maintains values in the range of λ to λ, the resultant amplitudes in both regions can be reduced to a favorable amount for any wave and structural parameters. It is also shown that the hydrodynamic forces on the breakwater decrease as the structural flexibility and porosity increase. However, with increases of the structural porosity and flexibility, the seawall experiences an increase of the hydrodynamic forces. Various results are presented in this paper to illustrate the effects of the structural and perous parameters together with the spacing on the response and efficiency of the breakwater-seawall wave-trapping system.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号